
GAMMA Class Super Operator (super_op) 123
Class Documentation Overview 7.1
7 Class Super Operator (super_op)

7.1 Overview

The Class SUPER OPERATOR defines all the necessary attributes of a quantum mechanical super-
operator, LOp. Within Class SUPER OPERATOR are also specifications of superoperator proper-
ties (dimension, ...), algebras (+, *,...), and definitions of all available superoperator functions.

7.2 Available Superoperator Functions

Superoperator Basic Functions

super_op - Constructor: LOp, LOp(mx), LOp(mx1, mx2), page 125
LOp(mx, bs), LOp(LOp1).

+ - Addition: LOp + LOp, LOp + mx, mx + LOp. page 127
+= - Unary Addition: += LOp, += mx. page 127
- - Subtraction: LOp - LOp, LOp - mx, mx - LOp. page 128
-= - Unary Subtraction: -= LOp, -= mx. page 129
* - Multiplication: LOp * LOp, LOp*mx, mx*LOp, page 130

LOp*Op,z*LOp,LOp*z.
*= - Unary Multiplication: *=LOp, *=mx, *=z. page 131
- - Negation: -LOp. page 128
= - Assignment: = LOp, = mx. page 126
/ - Division: LOp / z. page 131
/= - Unary Division: /= z.

Complex Superoperator Functions1

left - Left Translation LOp: Op, mx page 133
right - Right translation LOp: Op, mx page 134
commutator - Commutation Lop: [Op,], [mx,] page 135
d_commutator - Double commutation LOp: [Op, [Op,]], [mx, [mx,]], page 136

[Op1, [Op2,]], [mx1, [mx2,]]
U_transform - Unitary transform LOp: U__U-1 : LOp*Op = U*Op*U-1 page 137
exp - Superoperator exponential: exp(LOp); page 138

Superoperator Internal Access

get_mx - Retrieve superoperator matrix: LOp
put_mx - Input superoperator matrix: LOp
put_basis - Input superoperator basis: LOp
() - Direct LOp element access: z = LOp(3,2).

1. The commutation and double commutations superoperators may take spin operators instead of operators
or matrices. For the unitary transformation superoperator U is either an operator, spin operator, or matrix.
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 124
Class Documentation Available Superoperator Functions 7.2
put - Input LOp element directly:
get - Direct LOp element access:

Basis Manipulations

set_EBR - Put LOp into its eigenbasis: LOp page 139
set_HBR - Put LOp into its default Liouville space basis. page 139
Op_base - Put LOp into the Liouville space basis of another superoperator.

- Put operator into the Hilbert space basis of a superoperator.

Superoperator I/O

<< - Send LOp to an output stream: LOp page 139
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 125
Class Documentation Available Superoperator Functions 7.2
7.3 Arithmetic Operators

7.3.1 super_op

Usage:

#include <super_op.h>
super_op ()
super_op (matrix &mx)
super_op (matrix &mx1, matrix &mx2)
super_op (matrix &mx, basis &bs)
super_op (super_op &LOp)

Description:

The function super_op is used to create a superoperator quantity.

1. super_op() - sets up an empty superoperator which can later be explicitly specified.

2. super_op(mx) - sets up a superoperator with the matrix in the argument assumed to be the superoperator
in the default basis. The specified matrix must be a square array in the Liouville space.

3. super_op(mx1, mx2) - With two matrices as arguments, the function sets up a superoperator with matrix
representation mx1 in the basis formed from matrix mx2. Again, mx1 must be a square matrix of the
Liouville space dimension. The basis should relate properly to the default basis, and be the Hilbert space
dimension.

4. super_op(mx, bs) - With a matrix (mx) and a basis (bs) as arguments, the function sets up a superoperator
with matrix representation mx in the basis bs. Again, mx must be a square matrix and its dimension that
of the Liouville space. The basis should relate properly to the default basis, and be the Hilbert space di-
mension.

5. super_op(LOp) - One may produce a superoperator from another superoperator. The new superoperator
will then be equivalent to the input superoperator LOp.

Return Value:

Creates a new superoperator which may be subsequently used with all defined superoperator functions.

Examples:

#include <super_op.h>

matrix mx;

basis bs;

super_op LOp; // produces an empty superoperator LOp.

super_op LOp1(mx); // set superoperator LOp, matrix mx in default basis.

super_op LOp2(mx, bs); // set superoperator LOp2, matrix mx in the basis bs.

super_op LOp3(LOp2); // set superoperator LOp3 equal to current LOp2.
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 126
Class Documentation Available Superoperator Functions 7.2
Mathematical Basis:

Each superoperator is a matrix in Liouville space and has associated with it a basis in Hilbert space.

In all superoperator constructors the matrix provided must be in the Liouville space dimension, the Hilbert
space dimension squared. The constructor basis (or matrix to be used as the basis) must be of Hilbert space
dimension, smaller in size than the actual superoperator matrix.

See Also: =

7.3.2 =

Usage:

#include <super_op.h>
super_op operator = (super_op& LOp)
super_op operator = (matrix& mx)

Description:

This allows for the ability to equate either a superoperator or a matrix to another superoperator.

1. For the equating of two superoperators, LOp = LOp1, superoperator LOp is set equal to superoperator
LOp1. LOp will be in the current basis of LOp1.

2. For the assignment of a matrix to a superoperator, LOp = mx, the superoperator LOp is set equal to the
matrix mx and the basis is assumed to be the default basis. The matrix mx must be in the Liouville space.

Return Value:

none.

Example(s):

#include <super_op.h>

matrix mx; // define a matrix mx.

11

31
21

.

N1

.

.

.

13

33
23

.

N3

.

.

.

12

32
22

.

N2

.

.

.

1N

3N
2N

.

NN

.

.

.

.

.

.

.

.

.

.

.

.

. . .

Superoperator Basis1N211 12 13

Superoperator Matrix

.

..
..

..
..

..
.

2N221 22 23

3N231 32 33

N2N2N21 N22 N23

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

4N241 42 43

in Liouville Space

in Hilbert Space
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 127
Class Documentation Available Superoperator Functions 7.2
super_op LOp1, LOp2; // define two superoperators LOp1 and LOp2.

LOp1 = LOp2; // LOp1 set equal to superoperator LOp2.

LOp1 = mx; // LOp1 set in the default basis to have matrix mx.

See Also: super_op (constructors)

7.3.3 +

Usage:

#include <super_op.h>
super_op operator + (super_op& LOp1, super_op& LOp2)
super_op operator + (super_op& LOp, matrix& mx)
super_op operator + (matrix& mx, super_op& LOp)

Description:

This allows for the addition of two superoperators, LOp1 + LOp2 and the addition of a superoperator with a
matrix, LOp1 + mx.

1. LOp1 + LOp2 - Definition of the addition of two superoperators LOp1 and LOp2. A check is made to
insure that both superoperators are in the same basis. If this is not true, superoperator LOp2 is trans-
formed into the basis of superoperator LOp1 prior to the addition, thus insuring that the addition produc-
es a result in (and only in) the same basis of LOp1.

2. LOp + mx - Definition of the addition of a matrix mx to a superoperator LOp. The matrix mx is assumed
to be a matrix in the default basis and the addition takes place in the default basis. Superoperator LOp is
first placed in the default basis, the addition takes place, and then the result is new superoperator in the
default basis.

3. mx + LOp - Definition of the addition of a superoperator LOp to a matrix mx. The result is equivalent
to the previous addition, it produces a new superoperator in the default basis.

Return Value:

A new superoperator which exists in an appropriate representation.

Example(s):

#include <super_op.h>

matrix mx;

super_op LOp1,LOp2,LOp3; // define three superoperators LOp1,LOp2, & LOp3.

LOp3 = LOp1 + LOp2; // LOp3 is sum LOp1 + LOp2. Only in WB of LOp1.

LOp3 = mx + LOp1; // LOp3 is sum LOp1 + matrix mx. Only in DB.

LOp3 = LOp1 + mx; // same as the previous line.

See Also:

 +=, -, -=

7.3.4 +=
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 128
Class Documentation Available Superoperator Functions 7.2
Usage:

#include <super_op.h>
super_op operator += (super_op &LOp)
super_op operator += (matrix &mx)

Description:

This allows for the addition of two superoperators of the type LOp = LOp + LOp1 or the addition of a matrix
to a superoperator LOp = LOp + mx.

1. LOp += LOp1 - Definition of the unary addition of two superoperators LOp and LOp1. A check is made
to insure that both superoperators are in the same basis. If this is not true, LOp1 is placed into the basis
of LOp prior to the addition, thus insuring that the subtraction produces a result in (and only in) the same
basis of LOp.

2. LOp += mx - Unary addition of a matrix mx to a superoperator LOp. The matrix mx is assumed to be
a superoperator matrix in the default basis and the addition takes place in the default basis. Superoperator
LOp is first placed in the default basis, the matrix mx is then added to it.

 Use of this operator is more computationally efficient that the two step operation.That is, the statement LOp
+= LOp1; is preferred over the statement LOp = LOp + LOp1;.

Return Value:

A new superoperator which exists in an appropriate representation.

Example(s):

#include <super_op.h>

matrix mx;

super_op LOp, LOp1; // define two superoperators LOp and LOp1.

LOp += LOp1; // LOp1 added to LOp. Only in the WB of LOp.

See Also: +, -, -=

7.3.5 -

Usage:

#include <super_op.h>
super_op LOp - (super_op& LOp, super_op& LOp1)
super_op LOp - (super_op& LOp, matrix& mx)
super_op LOp - (matrix& mx, super_op& LOp)
super_op LOp - (super_op& LOp)

Description:

This allows for the subtraction of two superoperators LOp and LOp1, for the subtraction of a matrix from a
superoperator, and for the negation of a superoperator.

1. LOp - LOp1 - Definition of the subtraction of two superoperators LOp and LOp1. A check is made to
insure that both superoperators are in the same basis. If this is not true, LOp1 is placed into the basis of
LOp prior to the subtraction, thus insuring that the subtraction produces a result in (and only in) the same
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 129
Class Documentation Available Superoperator Functions 7.2
basis of LOp.

2. LOp - mx - Definition of the subtraction of a matrix mx from a superoperator LOp. The matrix mx is
assumed to be a matrix in the default basis and the subtraction takes place in the default basis. Superop-
erator LOp is first placed in the default basis, the matrix mx is then subtracted from it, and then the result
is new superoperator in the default basis.

3. mx - LOp - Definition of the subtraction of a superoperator LOp from a matrix mx. The result is equiv-
alent to the negative of the previous subtraction, it produces a new superoperator in the default basis.

4. - LOp - Definition of the negation of superoperator LOp. The result is a superoperator, in (and only in)
the working basis of LOp, which is -1.0 * LOp.

Return Value:

A new superoperator which exists in an appropriate representation.

Example(s):

#include <super_op.h>

matrix mx;

super_op LOp, LOp1, LOp2; // define three superoperators LOp, LOp1, and LOp2.

LOp2 = LOp - LOp1; // LOp2 set to LOp - LOp1. Only in the WB of LOp.

LOp2 = LOp -mx; // LOp2 set to be LOp minus matrix mx. Only in DB

LOp2 = mx - LOp; // same as -(LOp - mx). Only in the DB of LOp.

LOp2 = -LOp; // LOp2 set to negative LOp. Only in the WB of LOp.

See Also:+, +=, -=s

7.3.6 -=

Usage:

#include <super_op.h>
void operator -= (super_op& LOp1)

Description:

This allows for the subtraction of two superoperators of the type LOp = LOp - LOp1. A check is made to
insure that both superoperators are in the same basis. If this is not true, LOp1 is transformed into the basis of
LOp prior to the addition, thus insuring that the subtraction produces a result in (and only in) the same basis
of LOp. Use of this operation is more computationally efficient that the two step operation.That is, the state-
ment LOp -= LOp1; is preferred over the statement LOp = LOp - LOp1;.

Return Value:

Void. The input superoperator is modified.

Example(s):

#include <super_op.h>

matrix mx;

super_op LOp,LOp1; // define two superoperators LOp and LOp1.
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 130
Class Documentation Available Superoperator Functions 7.2
LOp -= LOp1; // LOP set to LOp - LOp1. Only in WB of LOp.

See Also:

 -,+,+=

7.3.7 *

Usage:

#include <super_op.h>
super_op operator * (super_op& LOp1, super_op& LOp2)
super_op operator * (super_op& LOp, matrix& mx)
super_op operator * (matrix& mx, super_op& LOp)
super_op operator * (complex& z, super_op& LOp)
super_op operator * (super_op& LOp, complex& z)
gen_op operator * (super_op& LOp, gen_op &Op)

Description:

This allows for the multiplication of two superoperators LOp1 and LOp2, the multiplication of a superoper-
ator and a matrix, and for the multiplication of a scalar and a superperator. Additionally the multiplication of
a superoperator into a general operator is defined, but not the reverse.

1. For the multiplication of two superoperators, a check is made to insure that both superoperators are in
the same basis. If this is not true, LOp2 is transformed into the basis of LOp1 prior to the multiplication,
thus insuring that the multiplication produces a result in the same basis of LOp1. Here, the order of the
superoperators can make a difference in the result.

2. For the multiplication of asuperoperator times a matrix, a superoperator is produced. It is assumed that
the matrix is a quantity in the default basis so that LOp is changed into the default basis before the mul-
tiplication.

3. The multiplication of a matrix times a superoperator also produces a superoperator. The treatment is sim-
ilar to the previous usage except the ordering can make a difference.

4. For the multiplication of a scalar times a superoperator, the complex scalar z is multiplied into each ele-
ment of LOp to produce a superoperator in the same basis of LOp.

5. The multiplication of a superoperator times a scalar produces the same result as multiplication of a scalar
times a superoperator.

6. The multiplication of a superoperator into a general operator produces a new operator. This operation is
performed in the basis of the superoperator.

Return Value:

none.

Example(s):

#include <super_op.h>

complex z;

super_op LOp1,LOp2,LOp3; // define three superperators LOp1, LOp2, and LOp3.

LOp3 = LOp1 * LOp2; // C is product of LOp1 times LOp2. In WB of LOp1.
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 131
Class Documentation Available Superoperator Functions 7.2
LOp3 = LOp2 * LOp1; // maybe not same as the previous line, order matters.

LOp3 = LOp1* z; // LOp3 is LOp1 with all elements multiplied by z.

LOp3 = z * LOp1; // same result as previous line. Only in WB of LOp1.

gen_op Op1; // define two general operators Op1 and Op2.

Op1 = LOp1 * Op2; // Op1 is LOp1 multiplied into Op2. In WB of LOp1.

See Also: *=, +, -, /

7.3.8 *=

Usage:

#include <super_op.h>
super_op operator *= (super_op& LOp1)
super_op operator *= (matrix& mx)
super_op operator *= (complex& z)

Description:

This allows for the multiplication of two superoperators of the type LOp1 = LOp1 * LOp2 or of a matrix
with asuperoperator, or of a scalar with a superoperator.

1. LOp2 *= LOp1 - For the multiplication of two superperators, a check is made to insure that both Oper-
ators are in the same basis. If this is not true, LOp1 is transformed into the basis of LOp2 prior to the
multiplication, thus insuring that the multiplication produces a result in the same basis of LOp2. Here,
the order of the superperators can make a difference in the result.

2. LOp *= mx - For the multiplication of a superoperator times a matrix, an superoperator is produced. It
is assumed that the matrix is a quantity in the default basis so that LOp is changed into the default basis
before the multiplication.

3. LOp *= z - The multiplication of a superoperator times a scalar (complex) also produces a superoperator.
This operation produces a result exclusively in the original working basis of LOp.

Use of this operation is more computationally efficient that the two step operation.That is, the statement
LOp1 *= LOp2; is preferred over the statement LOp1 = LOp1 * LOp2;.

Return Value:

A new superoperator which exists in an appropriate representation.

Example(s):

#include <super_op.h>

matrix mx;

super_op LOp1,LOp2; // define two superoperators LOp1 and LOp2.

LOp1 *= LOp2; // LOp1 set to LOp1 * LOp2. Only in WB of LOp1.

See Also:*, +, +=, -, -=

7.3.9 /
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 132
Class Documentation Available Superoperator Functions 7.2
Usage:

#include <super_op.h>
super_op operator / (super_op& LOp, complex& z)

Description:

This allows for the division of a superoperator by a complex number. Each element of the superoperator ma-
trix is divided by the complex number.The operation produces a result exclusively in the original working
basis of LOp.

Return Value:

A new superoperator which exists in an appropriate representation.

Example(s):

#include <super_op.h>

complex z;

super_op LOp; // define a superoperator LOp.

LOp *=z; // LOp1 set to LOp * z. Only in WB of LOp.

See Also:*, +, +=, -, -=
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 133
Class Documentation Available Superoperator Functions 7.2
7.4 Complex Functions

7.4.1 left

Usage:

#include <super_op.h>
super_op left (gen_op &Op)

Description:

Computes the left translation superoperator as defined by equation (14-5),

.

The output superoperator is in the working basis of the input operator.

Return Value:

The function returns a superoperator which is the left translation superoperator.

Example(s):

#include <super_op.h>

int main ()

{

 spin_sys sys(1);

gen_op Op,Op1; // construct two null operators

super_op LOp; // construct a null superoperator.

Op = Fz(sys). // set Op to the operator Fz for the spin system.

Op1 = Fx(sys). // set Op1 to the operator Fx for the spin system.

LOp = left(Op); // LOp is the left translation superoperator for Fz.

cout << LOp*Op1; // should output matrix Fz*Fx.

cout << Op*Op1; // should also aout Fz*Fx.

}

This example program prints out the following Hilbert space matrix twice, Fz*Fx.

Mathematical Basis:

The left translation superoperator is computed from taking cross products of the operator with the iden-

tiity matrix in accordance with equation (14-6)

ΓA OpA=

1
4
--- 0 1

1– 0

Op

Γ Op E⊗=
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 134
Class Documentation Available Superoperator Functions 7.2
7.4.2 right

Usage:

#include <super_op.h>
super_op right (gen_op &Op)

Description:

Computes the left translation superoperator as defined by equation (14-5),

.

The output superoperator is in the working basis of the input operator.

Return Value:

The function returns a superoperator which is the right translation superoperator.

Example(s):

#include <super_op.h>

int main ()

{

 spin_sys sys(1);

gen_op Op,Op1; // construct two null operators

super_op LOp; // construct a null superoperator.

Op = Fz(sys). // set Op to the operator Fz for the spin system.

Op1 = Fx(sys). // set Op1 to the operator Fx for the spin system.

LOp = right(Op); // LOp is the right translation superoperator for Fz.

cout << LOp*Op1; // should output matrix Fx*Fz.

cout << Op1*Op; // should also aout Fx*Fz.

}

This example program prints out the following Hilbert space matrix twice, Fx*Fz.

Mathematical Basis:

The right translation superoperator is computed from taking a cross products of the operator with the

identiity matrix in accordance with equation (14-6),

.

ΓA AOp=

1
4
--- 0 1–

1 0

Op

Γ E OpT⊗=
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 135
Class Documentation Available Superoperator Functions 7.2
7.4.3 commutator

Usage:

#include <super_op.h>
super_op commutator (gen_op &Op)

Description:

Computes the superoperator equivalent to the commutator of Op as defined by equation (14-3),

.

The output superoperator is in the working basis of the input operator.

Return Value:

The function returns a superoperator which is the commutation superoperator.

Example(s):

#include <super_op.h>

int main ()

{

 spin_sys sys(1);

gen_op Op; // construct a null operator

super_op LOp; // construct a null superoperator.

Op = Fx(sys). // set Op to the operator Fx for the spin system.

LOp = commutator(Op); // LOp is the commutation superoperator for [Fx,].

cout << LOp; // output commutation superoperator.

}

This example program prints out the commutation superoperator for Fx1.

Mathematical Basis:

The commutation superoperator is computed from taking cross products of the operator with the identiity

matrix in accordance with equation (14-4)

1. This matrix is listed in Ernst, Bodenhausen, and Wokaun, page 24, Figure 2.1.2

ΓA Op A,[] OpA AOp–= =

0 0.5– 0.5 0

0.5– 0 0 0.5

0.5 0 0 0.5–

0 0.5 0.5– 0

Op

Γ Op E⊗() E OpT⊗()–=
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 136
Class Documentation Available Superoperator Functions 7.2
For a single spin 1/2 particle in the product basis, three commutation superoperators are

According to the literature, if the commutator is Hermitiian then the commutator superoperator will be Her-

mitian as well1

7.4.4 d_commutator

Usage:

#include <super_op.h>
super_op d_commutator (gen_op &Op)
super_op d_commutator (gen_op &Op1, gen_op &Op2)

Description:

Computes the superoperator equivalent to the double commutator of Op. The double commutation superop-
erator is defined by equation (14-7),

,

where is a superoperator and both , , and are general operators

1. d_commutator (gen_op &Op) - The double commutation superoperator if formed in the basis of the op-
erator Op. The operators in the commutator are the same.

2. d_commutator (gen_op &Op1, gen_op &Op2) - T double commutation superoperator is formed from the
two input operators. Op2 will be the operator in the inner commutator and Op1 in the outer commutator.
The returned superoperator will be in the basis of Op1.

Return Value:

The function returns a superoperator which is the double commutator superoperator.

Example(s):

#include <super_op.h>

int main ()

{

 spin_sys sys(1);

gen_op Op1, Op2; // construct two null operators.

super_op LOp; // construct a null superoperator.

Op1 = Fp(sys). // set Op1 to the operator F+ for the spin system.

Op2 = Fm(sys). // set Op2 to the operator F- for the spin system.

LOp = d_commutator(Op1); // double commutation superoperator [Op1[Op1,].

1. Ernst, Bodenhausen, Wokaun, page 20, below equation (2.1.61)

Îx
1
2

0 1– 1 0

1– 0 0 1

1 0 0 1–

0 1 1– 0

= Îy
i
2

0 1– 1– 0

1 0 0 1–

1 0 0 1–

0 1 1 0

= Îz

0 0 0 0

0 1 0 0

0 0 1– 0

0 0 0 0

=

ΓA Op1 Op2 A,[],[]=

Γ Op1 Op2 A
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 137
Class Documentation Available Superoperator Functions 7.2
LOp = d_commutator(Op1,Op2); // double commutation superoperator [Op1[Op2,].

}

Mathematical Basis:

The double commutation superoperator is computed from cross products of the operators involved with the
identity matrix as given by equation (14-9).

When both operators are equivalent the equation slightly simplifies to equation (14-10).

Examples of double commutation superoperators for a single spin 1/2 particle in the product basis are given
below.

7.4.5 U_transform

Usage:

#include <super_op.h>
super_op U_transform(gen_op &Op)

Description:

Computes the superoperator equivalent to the similarity transform (unitary transformation) as defined by
equation (14-11),

.

The output superoperator is in the working basis of the input operator.

Return Value:

The function returns a superoperator.

Example(s):

#include <super_op.h>

gen_op Op; // construct a null operator

super_op LOp; // construct a null superoperator.

Op = Rx(sys, 90). // Op to 90 degree x-rotation operator for sys.

Γ Γ1Γ2 Op1Op2 E⊗() Op1 Op2
T⊗()– Op2 Op1

T⊗()– E Op1
TOp2

T⊗()+= =

Γ Γ1Γ1 Op2 E⊗() 2 Op OpT⊗()– E OpT2
⊗()+= =

Îxx Ix Ix[,][,]
1
2

1 0 0 1–

0 1 1– 0

0 1– 1 0

1– 0 0 1

= = Îyy Iy Iy[,][,]
1
2

1 0 0 1–

0 1 1 0

0 1 1 0

1– 0 0 1

= = Îzz Iz Iz[,][,]

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

= =

Îxy Ix Iy[,][,]
i
2

0 0 0 0

0 1 1 0

0 1– 1– 0

0 0 0 0

= = Îyz Iy Iz[,][,]
i
2

0 1– 1 0

0 0 0 0

0 0 0 0

0 1 1– 0

= = Îzx Iz Ix[,][,]
1
2

0 0 0 0

1– 0 0 1

1– 0 0 1

0 0 0 0

= =

ΓA OpAOp 1–=
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 138
Class Documentation Available Superoperator Functions 7.2
LOp = U_transform(Op); // LOp unitary transform superoperator Rx __ Rx-1.

Mathematical Basis:

The superoperator in this case relates to the operator according to equation (14-12),

,

7.4.6 exp

Usage:

#include <super_op.h>
super_op exp(gen_op &LOp)

Description:

Computes the exponential of the input superoperator.,

.

The output superoperator is in the basis of the input superoperator.

Return Value:

The function returns a superoperator.

Example(s):

#include <super_op.h>

gen_op Op; // construct a null operator

super_op LOp; // construct a null superoperator.

Op = Fx(sys). // Op to Fx for the spin system sys

LOp = d_commutator(Op); // LOp double commutator {Fx, [Fx,]].

LOp = exp(Op); // LOp exponential of {Fx, [Fx,]].

Mathematical Basis:

Op

Γ Op Op∗⊗=

Γ exp Γ1()=
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 139
Class Documentation Available Superoperator Functions 7.2
7.5 Basis Manipulations

7.5.1 set_EBR

Usage:

#include <super_op.h>
super_op set_EBR()

Description:

Places the superoperator into its eigenbasis. The superoperator will then be a diagonal array in Liouville space
and be associated with a basis transformation array which will convert it back into the original basis in which
the superoperator was before the funciton call. The previous representation is destroyed but can be regener-
ated with the function set_HSBR.

Return Value:

The function is void. It changes the input superoperator into its eigenbasis.

Example(s):

#include <super_op.h>

super_op LOp; // construct a null superoperator.

LOp.set_EBR(); // LOp placed into its eigenbasis.

Mathematical Basis:

7.5.2 set_HBR

Usage:

#include <super_op.h>
super_op set_HBR()

Description:

Places the superoperator into its original Hilbert space basis. If for some reason the superoperator basis has
been changed from that which it had when formulated, this function will return it to its original basis.

Return Value:

The function is void. It changes the input superoperator into its original Hilbert space basis.

Example(s):

#include <super_op.h>

super_op LOp; // construct a null superoperator.

LOp.set_HBR(); // LOp placed into its eigenbasis.

Mathematical Basis:

7.5.3 <<
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 140
Class Documentation Available Superoperator Functions 7.2
Usage:

#include <super_op.h>
ostream& operator << (ostream& str, super_op &LOp)

Description:

Sends the superoperator given in the argument list to the output stream specified.

Return Value:

None, the superoperator is put into the output stream
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 141
Class Documentation Available Superoperator Functions 7.2
7.6 Description

As the name implies, Class super_op (SUPER OPERATOR) deals with superoperators. Through-
out this document, use is made of the symbol LOp for a superoperator (Op for operator and L for
Liouville space). In mathematical expressions usually the capital gamma is the symbol for denoting
a superoperator, .

Basic Structure

Each superoperator is a matrix (see Class MATRIX) in Liouville space and has associated with it a
basis (see Class BASIS) in Hilbert space.

Superoperator Representation Structure

Figure 10-1 - Each superoperator has only one representation: a matrix and a basis. Any
change to the representation (basis change) destroys the previous representation.

The matrix form of LOp depends upon which basis the superoperator is expressed in. Without
knowledge of the basis the superoperator matrix is nearly useless, it could not be freely applied
without careful consideration from the external user. Class super_op will always associate an LOp
matrix with an LOp basis.

General Operators as Superoperators

There is an intrinsic relationship between general operators (spanning Hilbert space) and superop-
erators (spanning Liouville space). The following diagram shows the relationship between a gen-
eral operator, Op, and a superoperator LOp formed (through one of the provided functions) from
Op.

Γ

11

31
21

.

N1

.

.

.

13

33
23

.

N3

.

.

.

12

32
22

.

N2

.

.

.

1N

3N
2N

.

NN

.

.

.

.

.

.

.

.

.

.

.

.

. . .

Superoperator Basis1N211 12 13

Superoperator Matrix

.

..
..

..
..

..
.

2N221 22 23

3N231 32 33

N2N2N21 N22 N23

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

4N241 42 43

in Liouville Space

in Hilbert Space
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 142
Class Documentation Available Superoperator Functions 7.2
Formation of Superoperators from Operators

Figure 10-2 - When a superoperator is formed from an operator (or operators) its dimen-
sion is the square of the operator. On the other hand, the basis for both remain in the Hil-
bert space having the operator dimension.

Operator matrices are smaller in size than related superoperator matrices. Yet the basis matrices for
Op and LOp can be identical and exist in Hilbert space. Since superoperators are usually formed
from operators it is not a problem that the superoperator basis remains in Hilbert space. Operators
will always be converted to the superoperator basis with the Hilbert space transformation matrix,
i.e. the basis. An operator in an arbitrary basis (AB superscript) can be converted into the basis of
the superoperator (SB superscript) by first transforming into the default basis (DB superscript) and
then into SB.

(14-1)

(14-2)

Here U is a transformation matrix or basis matrix (see Class BASIS) in Hilbert space, Op the Op-
erator matrix in Hilbert space and the basis in which the superoperator resides, also a Hilber
space array. Thus, it is generally unnecessary to change the superoperator basis. Unlike general op-
erators, superoperators reside in only one basis at a time.

The Commutation Superoperator

The commutation superoperator is defined to be1,

(14-3)

where is a general superoperator (not explicitly a commutation superoperator) and both and

1. Ernst, Bodenhausen, and Wokaun, page 23, equation (2.1.81)

LOp Matrix

11

31
21

.

N1

.

.

.

13

33
23

.

N3

.

.

.

12

32
22

.

N2

.

.

.

1N

3N
2N

.

NN

.

.

.

.

.

.

.

.

.

.

.

.

. . .

11

31
21

.

N1

.

.

.

13

33
23

.

N3

.

.

.

12

32
22

.

N2

.

.

.

1N

3N
2N

.

NN

.

.

.

.

.

.

.

.

.

.

.

.

. . .

Op Matrix

Op Basis LOp Basis
(unchanged)

1N211 1213....

..
..

..
..

..
.

2N2212223....
3N2313233....

N2N2N21N22N23...

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.4N2414243....

UAB()†OpABUAB OpDB=

USBOpAB USB()† OpSB=

USB

ΓA Op A,[] OpA AOp–= =

Γ Op
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 143
Class Documentation Available Superoperator Functions 7.2
 are general operators. The superoperator in this case relates to the operator according to

(14-4)

The superscript T implies the transpose, ⊗ the tensor product, and the identity matrix of dimen-
sion equivalent to (the Hilbert space dimension.

The Left and Right Translation Superoperators

The commutation superoperator defined in equation (14-3) can also be written as a difference be-
tween the left and right translation superoperators1,

(14-5)

where is the left translation superoperator and the right translation superoperator. Again
and are general operators. Evidently the two translation superoperators are

and (14-6)

The superscript T implies the transpose, ⊗ the tensor product, and the identity matrix of dimen-
sion equivalent to (the Hilbert space dimension.

The Double Commutation Superoperator

The double commutation superoperator is defined to be,

(14-7)

where is a superoperator and both , , and are general operators. The single commu-
tation superoperator is also defined (see function commutator) and relates to the operator ac-
cording to

, where .

The superscript T implies the transpose, ⊗ the tensor product, and the identity matrix of dimen-
sion equivalent to (the Hilbert space dimension). One can expand the double commutator in
terms of single commutators and apply the single commutator superoperators twice.

Thus, the double commutator could be produced by the superoperator product in the previous equa-
tion, namely

 , (14-8)

where is the double commutation superoperator, is the single commutation superoperator
for the outside commutator, and is the single commutation superoperator for the inside com-
mutator. Although viable, this is an inefficient way to produce the double commutator superoper-

1. Ernst, Bodenhausen, and Wokaun, page 20, equation (2.1.59)

A Op

Γ Op E⊗() E OpT⊗()–=

E
Op

ΓA Op A,[] OpA AOp– ΓLA ΓRA–= = =

ΓL ΓR Op
A

ΓL Op E⊗= ΓR E OpT⊗=

E
Op

ΓA Op1 Op2 A,[],[]=

Γ Op1 Op2 A
Op

Γ’A Op A,[] OpA AOp–= = Γ’ Op E⊗() E OpT⊗()–=

E
Op

ΓA Op1 Op2 A,[],[] Op1 Op2 A,[] Op2 A,[]Op1–= =

ΓA Op1 Γ2A() Γ2A()Op1– Op1 Γ2A(),[] Γ1Γ2A= = =

Γ Γ1Γ2=

Γ Γ1
Γ2
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 144
Class Documentation Available Superoperator Functions 7.2
ator as can be seen from the original single commutator definition.

Using the distributive property of tensor algebra1,

(14-9)

Use of equation (14-9) is computationally more efficient than application of equation (14-8) as
demonstrated by the following figure.

Mathematical Operations Necessary for Double Commutator

Figure 10-3 - This table shows the mathematical operations used in the three equations
applicable to the computation of the double commutation superoperator.

Equation (14-8) involves 2 single commutator calculations (with (14-4)) as well as one superoper-
ator multiplication step. The Liouville space multiplication is computationally long and not neces-
sary when using equation (14-9). Although (14-9) has two operator multiplications and one more
operator subtraction than does (14-8) the total computation needed for these should be much less
than the superoperator multiplication2.

1. The distributive property used here is (A⊗B)(C⊗D)=(AC)⊗(BD).
2. The computational differences will be more pronounced as the Liouville space size increases.

Γ1Γ2 Γ1 Op2 E⊗() E Op2
T⊗()–{ }=

Γ1Γ2 Op1 E⊗() E Op1
T⊗()–{ } Op2 E⊗() E Op2

T⊗()–{ }=

Γ1Γ2 Op1 E⊗() Op2 E⊗() Op1 E⊗() E Op2
T⊗()–=

E Op1
T⊗() Op2 E⊗()– E Op1

T⊗() E Op2
T⊗()+()

Γ1Γ2 Op1Op2 E⊗() Op1 Op2
T⊗()– Op2 Op1

T⊗()– E Op1
T
Op2

T⊗()+=

Equation (11.5)

Op x Op (Hilbert Space)

Op +/- Op (Hilbert Space)

Op x Op (Hilbert Space)

LOp x LOp (Liouville Space)

Equation (11.4)Equation (11.2)

2

1 2

4

1

3

4

2

Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 145
Class Documentation Available Superoperator Functions 7.2
It may be of some use to show the derivation of equation (14-9) pictorially. Considering a single
spin 1/2 system, each Hilbert space operator will be a 2x2 array. Equation (14-8) looks schemati-
cally as

When the cross products are performed, the matrix size increases (from Hilbert to Liouville space).
The picture then appears as the following.

Op1 ⊗ 1
1 ⊗

Op1 ⊗
1

1
1

1 Op2T⊗

Op1T⊗

1
1

1
1⊗

Op1T⊗
1

1 Op2T⊗

Op2

Op2
1

1

1
1

x

x

x

Γ1Γ2 =

−

+

−

x

Op111

x x

x

Γ1Γ2 =
−

+x
−

Op2T

Op2T

Op2T

Op2T

Op1T

Op1T

Op1T

Op1T

0

0

0

00

00

0

E Op112E

Op121E Op122E

Op211E Op212E

Op221E Op222E

Op211E Op212E

Op221E Op222E

Op111E Op112E

Op121E Op122E
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 146
Class Documentation Available Superoperator Functions 7.2
The next step is to perform the sub-matrix multiplications.

It is thus obvious how the distributive property applies.

This is of course equivalent to our working equation (14-9).

Of final note is the situation which occurs when the two operators are equivalent, i.e. when

.

The equation then becomes

(14-10)

which requires one less cross product to be taken than in equation (14-9).

The Unitary Transformation Superoperator

The unitary transformation superoperator is defined to be1,

(14-11)

1. Ernst, Bodenhausen, and Wokaun, page 24, equation (2.1.83)

Γ1Γ2 =
−

Op1TOp211 . Op1TOp212 .

Op1TOp221 . Op1TOp222 .
−

Op2TOp111 . Op2TOp112 .

Op2TOp121 . Op2TOp122 .

+
0

0

Op2TOp1T

Op2TOp1T

Op111 Op211

Op112 Op221 E
+(
)

Op121 Op211

Op122 Op221 E)

Op111 Op212

Op112 Op222 E)

Op121 Op212

Op122 Op222 E)

(

((

xΓ1Γ2 = −

+−

1
1

Op1T⊗ Op2Tx

Op1 Op2 ⊗

1
1

Op1 ⊗ Op2T

Op2 ⊗ Op1T

Γ1Γ2 Op1Op2 E⊗() Op1 Op2
T⊗()– Op2 Op1

T⊗()– E Op1
TOp2

T⊗()+=

Op Op1 Op2= =

Γ Γ1Γ1 Op2 E⊗() 2 Op OpT⊗()– E OpT2
⊗()+= =

ΓA OpAOp 1–=
Scott Smith April 30, 1998

GAMMA Class Super Operator (super_op) 147
Class Documentation Available Superoperator Functions 7.2
where is a general superoperator (not explicitly a unitary transformation superoperator) and both
 and are general operators. The superoperator in this case relates to the operator accord-

ing to

(14-12)

The superscript * implies the complex conjugate and ⊗ the tensor product.

Superoperator Exponentials

Whenever superoperators mix with operators it is perferable to perform any basis transformations
in the Hilbert space, i.e. on the operators not the superoperators. This is simply because of the vast
increase in size of the matrices involved. This desire motivated class superoperator maintaining its
basis in Hilbert space and not Liouville space.

Seemingly contrary to this, there are times when one desires the superoperator in a different basis
and this is in fact allowed. This situation typically arises in computation of the following exponen-
tial.

(14-13)

To compute this exponential the superoperator must be placed in its eigenbasis, where the super-
operator matrix is diagonal. In this instance, there will be a basis matrix in Liouville space which
will convert the eigenbasis (diagonal form) back to the initial basis.

(14-14)

Here is a Liouville space transformation matrix or basis matrix. Superscript SB is used for the
original superoperator basis, and superscript EB for the eigenbasis. is the superoperator in
its eigenbasis and is diagonal. The exponential now becomes

. (14-15)

When this exponential is to be determined for different times it is essential that the superoperator
be stored in its eigenbasis and this mandates the storage of the corresponding basis in Liouville
space.

Γ
Op A Op

Γ Op Op∗⊗=

exp LOp()t[]

UL
SB()†LOpEBUL

SB LOpSB=

UL
LOpEB

exp LOpSB()t[] UL
SB()† exp LOpEB()t[]{ }UL

SB=
Scott Smith April 30, 1998

	7 Class Super Operator (super_op)
	7.1 Overview
	7.2 Available Superoperator Functions
	7.3 Arithmetic Operators
	7.3.1 super_op
	Usage:
	Description:
	1. super_op() - sets up an empty superoperator which can later be explicitly specified.
	2. super_op(mx) - sets up a superoperator with the matrix in the argument assumed to be the super...
	3. super_op(mx1, mx2) - With two matrices as arguments, the function sets up a superoperator with...
	4. super_op(mx, bs) - With a matrix (mx) and a basis (bs) as arguments, the function sets up a su...
	5. super_op(LOp) - One may produce a superoperator from another superoperator. The new superopera...

	Return Value:
	Examples:
	Mathematical Basis:
	See Also: =
	7.3.2 =

	Usage:
	Description:
	1. For the equating of two superoperators, LOp = LOp1, superoperator LOp is set equal to superope...
	2. For the assignment of a matrix to a superoperator, LOp = mx, the superoperator LOp is set equa...

	Return Value:
	Example(s):
	See Also: super_op (constructors)
	7.3.3 +

	Usage:
	Description:
	1. LOp1 + LOp2 - Definition of the addition of two superoperators LOp1 and LOp2. A check is made ...
	2. LOp + mx - Definition of the addition of a matrix mx to a superoperator LOp. The matrix mx is ...
	3. mx + LOp - Definition of the addition of a superoperator LOp to a matrix mx. The result is equ...

	Return Value:
	Example(s):
	See Also:
	7.3.4 +=

	Usage:
	Description:
	1. LOp += LOp1 - Definition of the unary addition of two superoperators LOp and LOp1. A check is ...
	2. LOp += mx - Unary addition of a matrix mx to a superoperator LOp. The matrix mx is assumed to ...

	Return Value:
	Example(s):
	See Also: +, -, -=
	7.3.5 -

	Usage:
	Description:
	1. LOp - LOp1 - Definition of the subtraction of two superoperators LOp and LOp1. A check is made...
	2. LOp - mx - Definition of the subtraction of a matrix mx from a superoperator LOp. The matrix m...
	3. mx - LOp - Definition of the subtraction of a superoperator LOp from a matrix mx. The result i...
	4. - LOp - Definition of the negation of superoperator LOp. The result is a superoperator, in (an...

	Return Value:
	Example(s):
	See Also:+, +=, -=s
	7.3.6 -=

	Usage:
	Description:
	Return Value:
	Example(s):
	See Also:
	7.3.7 *

	Usage:
	Description:
	1. For the multiplication of two superoperators, a check is made to insure that both superoperato...
	2. For the multiplication of asuperoperator times a matrix, a superoperator is produced. It is as...
	3. The multiplication of a matrix times a superoperator also produces a superoperator. The treatm...
	4. For the multiplication of a scalar times a superoperator, the complex scalar z is multiplied i...
	5. The multiplication of a superoperator times a scalar produces the same result as multiplicatio...
	6. The multiplication of a superoperator into a general operator produces a new operator. This op...

	Return Value:
	Example(s):
	See Also: *=, +, -, /
	7.3.8 *=

	Usage:
	Description:
	1. LOp2 *= LOp1 - For the multiplication of two superperators, a check is made to insure that bot...
	2. LOp *= mx - For the multiplication of a superoperator times a matrix, an superoperator is prod...
	3. LOp *= z - The multiplication of a superoperator times a scalar (complex) also produces a supe...

	Return Value:
	Example(s):
	See Also:*, +, +=, -, -=
	7.3.9 /

	Usage:
	Description:
	Return Value:
	Example(s):
	See Also:*, +, +=, -, -=

	7.4 Complex Functions
	7.4.1 left
	Usage:
	Description:
	.
	Return Value:
	Example(s):
	Mathematical Basis:
	7.4.2 right

	Usage:
	Description:

	.
	Return Value:
	Example(s):
	Mathematical Basis:

	.
	7.4.3 commutator
	Usage:
	Description:

	.
	Return Value:
	Example(s):
	Mathematical Basis:
	7.4.4 d_commutator

	Usage:
	Description:

	,
	1. d_commutator (gen_op &Op) - The double commutation superoperator if formed in the basis of the...
	2. d_commutator (gen_op &Op1, gen_op &Op2) - T double commutation superoperator is formed from th...
	Return Value:
	Example(s):
	Mathematical Basis:
	7.4.5 U_transform

	Usage:
	Description:

	.
	Return Value:
	Example(s):
	Mathematical Basis:

	,
	7.4.6 exp
	Usage:
	Description:

	.
	Return Value:
	Example(s):
	Mathematical Basis:

	7.5 Basis Manipulations
	7.5.1 set_EBR
	Usage:
	Description:
	Return Value:
	Example(s):
	Mathematical Basis:
	7.5.2 set_HBR

	Usage:
	Description:
	Return Value:
	Example(s):
	Mathematical Basis:
	7.5.3 <<

	Usage:
	Description:
	Return Value:

	7.6 Description
	Superoperator Representation Structure
	Figure 10-1 - Each superoperator has only one representation: a matrix and a basis. Any change to...

	Formation of Superoperators from Operators
	Figure 10-2 - When a superoperator is formed from an operator (or operators) its dimension is the...
	(14-1)
	(14-2)
	(14-3)
	(14-4)
	(14-5)
	 and���������� (14-6)
	(14-7)

	,������where �������.
	, (14-8)
	(14-9)

	Mathematical Operations Necessary for Double Commutator
	Figure 10-3 - This table shows the mathematical operations used in the three equations applicable...
	.
	(14-10)
	(14-11)
	(14-12)
	(14-13)
	(14-14)
	. (14-15)

